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PART I 

A. INTRODUCTION 

Preceding "Parameter Optimization" reports have been primarily concerned 

with methods of  determining orbital parameters from various types of observational 

data, relations between errors in the parameters so determined and errors i n  the 

observational data, and to an extent, with the nature of  the observational errors 

themselves. We now turn our attention to the related, but essentially independent, 

problem of describing the state of our information about the dynarnical variables of  

the orbiting body when the most probable values of the orbital parameters and the 

uncertainties i n  these values have been determined using one of the methods previously 

described. 

Knowledge of  the analytical dependence of the uncertainties i n  these variables 

may be put to a variety o f  applications. I t  allows us to find out at what points i n  an 

orbit a particular variable i s  known most accurately (or least accurately), and by 

inference, at what point or points (and what type 00 additional measurements would 

be most advantageous. It also pennits us to establish quite arbitrary criteria for 

discriminating between sets of parameters (For example, i f  two sets of orbit parameters 

describing the same orbit are obtained by different techniques, we may decide which 

set w i l l  allow the most accurate determination of position or velocity at a specific 

point i n  the orbit, or for which set the maximum error i n  position or velocity w i l l  be 

least). The results of such a study are virtually independent of the methods used in  

determining the orbital parameters, and are thus a generally applicable extension of 

a l l  previous "Parameter Optimization" reports. 

In  order that results of such general validity might be obtained in  a brief and 

easily uti l ized form, and to facilitate computation, the following simplifying assump- 

tions have been made: 

(1) Only ell iptical orbits o f  low eccentricity are considered, 

and analysis i s  l imi ted to variables i n  the plane of  the 

orbit. 
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Errors i n  orbital elements are assumed to be purely statis- 

t ical  in nature. The classical elements are, i n  fact, treated 

as uncorrelated random variables, following an approxi- 

mately Gaussian distribution. 

A l l  perturbations on the classical equations of motion, 

which produce secular variations i n  the parameters, 

are neglected i n  determining the dynamical propagation 

o f  these statistical errors. 

The duration of time for which the propagation of errors 

i s  followed i s  less than, or o f  the order of, the period o f  

the motion. (This i s  in keeping with our omission of 

secular variations i n  orbital parameters). 

Our discussion i s  divided into three parts. I n  Part A, we reiterate i n  concise 

form a part of the work done in previous reports which i s  directly related to our 

present purpose. In particular, we develop, i n  a form especially suitable for small 

eccentricity, expressions for the variances of  the classical orbital parameters 

obtained from a single posit ionvelocity measurement. In Part B, expressions are 

derived, under the previously mentioned assumptions, for the propagation of the 

variances i n  the dynamical variables as a function of  the angular position of the 

orbiting body, the classical parameters of the ellipse and the variances i n  these 

parameters. The variations o f  errors from init ial values are found to be functions 

of  the eccentricity only. Simplified forms of  these expressions, in  which the relative 

values of  the parameter variances are estimated from the results of Part A, are also 

given. Part C i s  devoted to a summary of qualitative results, including illustration 

i n  graphical form of the behavior of the error propagation functions for a few values 

o f  ratios of parameter variances, and suggestions for further extension of this 

approach. 
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6. DEFINITION OF THE CLASSICAL ORBITAL PARAMETERS, AND THEIR 

DETERMINATION FROM A SINGLE POSITION-VELOCITY MEASUREMENT. 

The equations for a body moving in an ell iptical orbit may be written in  a 

number of equivalent forms. In our present treatment, we shall adhere to the use 

of a polar coordinate system, with the origin located at the focus approximately 

coincident with the center of force. For the four parameters required to describe 

the in-plane motion of such a body, we take the eccentricity 'le, I' semi-latus 

rectum pf  perihelion angle 0 , and time of perifocal passage t . The equations 

of motion then leave the form: 

II I I  

P P 

r =  P 
1 te cos(0 - 8 ) 

P 

where K = G Me. The velocity components are consequently given by: 

pe sin(8-0 ) e  

C1 + e cos(@-8 )I r = V r =  . 2 
P 

I f  measurements of r, 0 ,  V V, are made at the same time (t = 0), 
r 

and give results ro, 8 

as functions of these measured quantities from equations (1) -, (4). The results are 

V , V, , the classical parameters may be determined 
0 

0' r 
0 



2 2 2  

+ r \ f  rove 0 

V 2 

0 1+-  ~I 
0 

K 2 K 

0 
v0 

r V  2 
o e  - 1 - 1  ' 0 - 1 , :  

P O  / L e \  K 1 1  

1 e = e  - c o s  - 

3 3  

K2 

0 
ro v0 

t =  

e I 

I P  de 
! CI 

e CI + e cos(ei - e )I ' 
0 P 

4 

(5) 

I f  the results of the measurements (V , Bo, V , V6 ) are subject to uncorrelated 
0 r 

random errors of known standard deviation pr , 00 , O V  
0 0  

, We ) the variances of 
0 0  r 

0 0 

the parameters are given, to a good approximation, (if the standard deviations of the 

measurements are sufficiently small) by, e .g . , 

with similar expressions for the other parameters. Before deriving expressions for the 

necessary partial derivatives, i t  i s  convenient to introduce the assumption of smal I eccentricity 

in  Equation (8), which then becomesf to order e 2. , 

2 2 2 2 2 * Note: Oe O r  2f 00 , etc. are to be read (Oe) , (or ) (08 ) , etc. throughout 
0 0 0 0 

this report. 

\ 



The sixteen partial derivatives may then be written as functions of e and (e - 0 ), 
O P  

) a form particularly suitable for the small e approximation, as (putting 0 - e 
O P O  

1 ae - 1 '- - -- e + c o s a  
ar r i 0 
0 0  

0 0 

c 

ae 
1 - 1  7 -  -. 

aVe Ve i e 0-1 i 0-l 
P=- (-)sins ' . 2 + e c o s a  

0 0 

ae 
1 = o  ; 
av 

r 
0 
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0 0 

1 -3a + -  sina , 

r 01 

at 

0 0 

a t  

0 

0 0 

0 0 

(All of the above expressions, with the exception of those for partials of t , 
P 

are, to this point, exact, and involve no approximation.) 
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Utilization of Equations (1 1) - (14) in  Equation (9), and in similar expressions 

for the other parameter variances, gives (omitting terms of order e 2 ) 

2 
Or r 

r 2 . 4  -7 0 - 0  
+ t e  sin a - + De =, cos a + 2 e  COS^ 7 

2 -  2 
i 0 0-; 0-1 ” 2 z L 

r 
0 r 

0 

2 

$- 4 cos a + 4 e  COS^ + 4 e cos ad 7 0 
OV0 

v0 

- 2  2 -  
L 0 0 

0 

2 

sin a +-sin u cosu t sin a COS a - - 4  2 4 
- 2  o e  0 0 0 e 

+ -  
2 

Q !  v, 
0 

L 

0 
OVO 

2 
Or 

2 - 2- 0 - 2; 
L p - i  2 op x 4 p  - +  4 

V, i , 2  
r 

0 

P 



L 

The parameter variances may thus, in  principle, be determined, to  the approximation 

considered, from Equations (15) + (18). However, detailed knowledge of the relative 

magnitudes of the percentage standard deviations of the measured quantities, and their 

functional variations with a i s  required. The immediate ut i l i ty  of these equations i s  
0 n 

L 2 
that i t  becomes apparent that, for this type measurement, De and '4 wil l  be of 

2 2 P' 1 
about the same order of magnitude, while (for small e) 00 , otp2 wi l l  be about ( -  ) P e 

larger than the former quantities. In  our subsequent development, this result i s  assumed 

to be generally valid, even when other sets of measurements may be used in  determining 

the oh i ta l  parameters. 
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C. DEVELOPMENT OF EXPRESSIONS FOR PROPAGATION OF VARIANCES 

OF DYNAMICAL COORDINATES 

We have shown in part A how the classical orbital parameters (e, p, 8 , t ) 

may be determined from a particular set of measurements, and have indicated also how 

the accuracy of these parameters may be determined i f  the accuracy of the original 

measurements i s  known. We shall now consider the complimentary question: given the 

most probable orbital parameters, and associated standard deviations for each at time 

t = 0, what standard deviations should be associated with the dynamical variables at a 

later time? I f  the probability density functions for the orbital parameters themselves 

i s  approximately Gaussian, we wi l l  have, in  analogy with (9), 

P P  

(It i s  perhaps worth emphasizing that the or of part A differs from the or of 
0 

Equation (19) i n  that the former refers to the probability distribution for errors associated 

with measurement of the independent variable r , while the latter relates to deviations 

in  the calculated value of r at a specific time t to the true value of the radial position 

of the satellite at this same time.) 

0 

2 2 2 
Again, (iquations similar to Eq. (19) w i l l  hold for 58 , aVr , oV, . I f  the 

equations of  motion are written i n  the form of Eqs. (1) and (2), however, care must be 

exercised 

as the independent variable. 

8 as the independent variable, in  which case ut, the variance in  tne prec'icted time 

of arrival of the satellite at a given angle 8, would be calculated rather than 08). 

The correct expression for the - appearing in Eq. (19), for example, i s  

i n  obtaining the partial derivatives appropriate for the assumption of "t" 

(One obvious alternative not considered in  detail i s  to choose 

ar 
ae 
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Similarly, 
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Generally speaking, the expressions obtained from differentiation of  Eqs. ( 1 )  + (4) 

are quite complicated; however, and i t  i s  convenient to introduce the requirement of 

small eccentricity to simpify Eqs. (1) and (2) before the partial derivatives are taken. 

The results are (to order e ) 2 

r = p [  I - e  cosa + - e2 cos 2 a] 
2 

(where a = 0 - 0 ) . 
P 



1 1  

The sixteen partial derivatives required are then 

 COS^ - 2 e + 3 e  

sin a 
3 e a  1 - e c o s a - -  

ar -x 
aP 2 

ar - JK 
at P 

- e sina - - -  
P 

ar - = o  
ae 

P 

(24) 

t 

- 2  
x 2s ina  - 3 e a + e s i n a c o s a  - 6 e  a c o s a  

ae - 
ae 

ae 
ae 
- = I  

P 

i 
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-- aV r - - - ! E 3 [ e s i n a + 3 e ~ c o s a + 6 e  2 ~ C O S  2 a] 
2 

P aP 

aV 2 

at 
2 =-($) e cosa[ 1 + e c o s a ]  

P P 
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2 2 
have been omitted from the above expressions, except when e (Terms in  e 

occurs as a multiplier of a term linear in  a; this i s  consistent with the fact that, by  

carrying terms through order e 

with respect to e , wi l l  be good to order e only.) 

2 .  at 
in our expression for t, - , and hence al l  partials 

ae 

The variances computed from -+ (27), and from Eq. (9) and i t s  counterparts 

for the other variables are (putting 

2 2 
--or 1 2  *[(I - F a s i n a )  3e - 2 e c o s a + 3 e  s inacosa 

P 
2 

r 2  2 2 +L cos a + 6  e a sina  COS^ - 4 e cosa]  De 



+r cos 2 a  + 6 e 2 a sina cosa- 4 e sin 2 a c o s a  ]De2 + 
L 

+[sin 2 a  + 4 e  cosasin 2 a  . 
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D. RESULTS AND COMMENTS 

In Figures 1 + 4 and l a  + 4a, Eqs. (28)'(31) are plotted for eccentricities 

e = 0.10, 0.05, and 0.01, and for two different assumptions as to the relative magnitudes 

of the standard deviations in  the orbital parameters. In obtaining Figures 1-4, we assume 

2= De = ea8 = Ox, while for Figures la  -4.0, we again take De = O T  = ea0 = OX , 
P P P 

but E = 20x. These assumptions are suggested by Eqs. (15) -, (18), and should be 

reasonably valid for illustrating some of the aspects of the behaviour of these functions. 

cr 
P 

2 
A general feature of a l l  the curves (except the Or curve in  Fig. 2) i s  a pronounced 

minimum somewhere in  the second quadrant. The location of this minimum i s  plotted as a 
2 

function of e for 00  in Figures 5 and 5a. 
Or 

For small eccentricity, 08 i s  clearly an order magnitude greater than - 
P 

The magnitudes of the fluctuations in the variances for a l l  the variables, and, for 00, 

the magnitude of the variance at the peribelion as well, i s  strongly dependent on e. 

This fact suggests that an extension of this investigation to orbits of higher eccentricity 

might mean even more significant variations. The simplifications introduced for small e 

would, of course, then be invalid; however, the eccentric anomaly "E" as an independent 

parameter and expressing the equations of motion in the form r = r(E), 8 =8(E),t = t(E) 

leads to a vigorously valid expression for t(E) in closed form. Through this approach, 

analysis valid for larger e and for longer periods of observation, but otherwise similar 

to that carried out here, might be possible. 

Other possibil ities for further investigation include extension of the analysis to 

three dimensions, and more sophisticated treatment of the parameter errors. (Uti1 izing 

other parameters, allowing non-gaussian distributions or correlations for the parameters, etc . ) 
The former problem should be relatively straightforward, while the latter would necessarily 

involve more detailed knowledge of  typical parameter uncertainties. 
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PART II 

A. INTRODUCTION 

The object of  this part of the study i s  to  provide background information 

and procedures in the area of  orbit determination from the data obtained by a 

radio tracking system to aid in  defining the orbital parameters. The accuracy 

with which range and range-rate can be determined using specific station 

tracking systems has been studied in  general. The following discussion i s  the 

methods and procedures for uti l izing range and range-rate data from specific 

radio tracking systems to determine the desired orbital parameters. 

The first approach o f  this study was the orbital parameters determination 

procedure by range measurement only. A systematic method of  orbit determination 

which can correct the measurement error has been developed. Next we considered 

the orbital determination procedures using the data of range-rate measurement. It 

was found that for a minimum of three stations the orbital parameters cannot be 

determined by range-rate measurement alone. 

The effectiveness of  range-rate measurement for the orbit determination 

was found to be dependent upon the accuracy of range measurement. Finally, a 

general method of orbit determination i s  proposed by merely using four range-rate 

doppler tracking stations. 

B. PROCEDURES OF ORBITAL PARAMETERS DETERMINATION BY RANGE 

MEASUREMENTS ONLY. 

The range measurements r between a radio tracking station and a spaceship 
S 

can be expressed i n  terms of a specific azimuth angle A and elevation angle E. 

The azimuth angle i s  the angle o f  the projection of r on the horizon plane of  
S 
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the tracking station measured with respect to the direction of  south. The elevation 

angle i s  the angle between vector 7 and the horizon plane of the tracking station. 

As shown in  Figure 1, let us set up a rectangular coordinate system with the 

origin situated at the center o f  the tracking station, the xs - y 

with the plane of the horizon and the x - axis points south. The relationship 

between x 

plane coincides 
S 

S 
z and rs , E, A is :  

S I Y S ,  s 

x = r cos E cos A 
s s  

ys= rs cos E sin A 

z = r sin E 
s s  

2 
S 

r =  J x *  + y,2 + z 
S S 

- 1  ys A =  tan - 
X 

Z 
-1 S E =  tan 

For a given measurement of range r with elevation angle E and azimuth 
S 

and z . 
s f  ys S 

angle A, we can find the corresponding x 

We now proceed to transform the rectangular station coordinate (x Ysr zs) 

into a geocentric coordinate system, (x , y , zg). As shown i n  Figure 2, let the 

origin of  the station coordinate system be a distance r 

Furthermore, let  the z -axis of the geocentric coordinate system coincide with the 

9 g  
from the geocenter. 

0 

9 



axis of rotation of the earth. The x - y 

coincides with the equatorial plane. 

plane o f  the geocentric system 
9 9  

The transformation between x sr ySr zS and x , Y r z i s  
9 9 9  

where M =  3 

1 

0 

0 

0 

0 

z + r  s o  

Z 
S 

(4) 

i s  the translation matrix. 

i s  the rotation matrix by keeping y 

(7 - P) radians. 

unchanged and rotating the x - z plane s s  S 
TI 



z f r  
sin A cos B ( “1  

S 
z + r  

sin B (7 O )  
S 
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- 

[ cos A -s in  x :] 
0 0 1 

M =  sin X cos h 1 

i s  the rotation matrix by keeping the z-axis stationary and rotating the x-y plane A radians. 

So we have: 

‘12 

‘22 

‘32 

‘1 3 

where 

r c l l  ‘12 ‘13 1 

cos A sin @ 

sin X sin @ 

- cos p 

I ‘21 ‘22 ‘23 I =  M 1  M2 M3 

L ‘31 ‘32 ‘331 

- sin X 

cos X 

0 

cos x cos B (  
zs + S ro )1 

(7) 



There fore, 

y = (sin x sin B) xs + (cos X) ys + (sin x COS B 1 (zs + ro) 
g 

(9) 

z = -(cos B) xs + (sin B) (zs + ro) 
9 

I n  terms of the measured station parameters (range r elevation angle E 
S t  

and azimuth angle A), the x , y , z coordinates for the geocentric system are: 
9 9 9  

x = r cos E cos A cos X sin p- r cos E sin A sin X -I. (cos X cos B) (rs sin E + r ) 
9 s  S 0 

(10) 

y = r cos E cos A sin h sin p+ r cos E sin A cos + (sin X cos B) (r sin E + r ) (1 1) 
g s  S S 0 

z = - r cos E cos A cos B + s i n  B (r sin E + ro) . (1 2) 9 0 S 

-+ 
Now, consider the earth which i s  rotating with a constant angular velocity iw. 

-9 

As shown in Figure 3, take w i n  the same direction as the + z -axis. The 

relationship between the geocentric system (x , y , z ) and the inertial geocentric 

system (x., y., 2.) is :  

g 

9 9 9  

I l l  

cos w t  - sin wt [ I: ] =[si;wt c;wt 81 [ 
So we have: 

x. = x  coswt - y  sinwt 
1 9  9 

= r cos w t  [cos E cos A cos X sin p -  cos E sin A sin X 

+ cos X cos B sin E J - r sin w t  [cos E cos A sin X sin f3 

+ cos E sin A cos X + sin X COS B sin E ] 

S 

S 

+ r [cos x cos B cos w t  - sin X cos B sin w t ]  
0 
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y. = x sin w t  + y coswt 
1 9  SI 

= r s i n w t  cos E cos A cos X sin B - cos E sin A sin X 

+ cos 1 cos B s i n  E 1 + r cos w t  [cos E cos A sin h sin B 

+ cos E sin A cos X + sin X cos f3 sin E l  

+ r [ C O S X  cos@ s i n w t + s i n X  COSB c o s w t l  

S 

S 

0 

z, = z 
I € !  

= - r cos E cos A cos B + r sin B sin E + ro sin fl 
0 S 

x. can be simplified as; 
I 

x. = r cos E cos A sin P [cos wt cos X- sin w t sin X 1 

cos E sin A [cos w t  sin X + sin w t cos X 1 

cos B s i n  E [cos w t  cos X - sin w t  sin X 1 

I S  

- r 
+ r 

+ r  cos^ [coswt c o s x  - s i n w t  sin X I  

= (rs cos E cos A sin B + rs cos B sin E + ro COS B) 

S 

S 

0 

cos (w t + A) - r cos E sin A sin (wt + h ) . 
S 

Likewise, yi can be simplified as: 

y. = r cos E cosA sin fl [ s inwt  cos X + coswt sin XI 
I S  

+ r  cosE s i n A [ c o s w t  c o s X - s i n w t  s i n 1 1  

+ r 

+ r cos B [s inwt cos )I + coswt sin 11 

= (r cos E cos A sin B + r sin E cos fl + r cos B) 

cos E sin A cos ( w t  + X ) 

S 

cos B sin E [sin w t  cos X + cos w t sin X 1 
S 

0 

S S 0 

sin ( w t  + X) + r 
S 
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Therefore, the coordinates of the inertial geocentric system are: 

x. = (r cos E cos A sin 8 + r cos fl sin E + r cos 8) 
I S  S 0 

cos ( w t  -t- X) - r cos E s inA sin ( w t  + A )  
S 

= (r cos E cosA sin 8 + r  sin E cos @ + r cos 8 )  
Y i  s S 0 

sin ( w t  + h ) +  rs cos E s inA cos ( w t +  X) 

z. = r sin B sin E - r cos E cosA cos B + r sin @.  
I S  0 0 

Now, let us find the intersecting angle 5 of the orbital plane 

and the inertial equatorial plane. 

S f  
From each set of data (r E, A) and information concerning the position 

(A, 0 ) of the tracking station, we can determine the corresponding position (x., 

yi, z.) of the space ship with respect to a certain t ime reference (t) of the geocentric 

inertial system. 

I 

I 

Suppose the orbital plane ot the inertial geocentric system is: 

a x . +  b y . +  c z . = d .  
I I I 

With three sets of measured data, we can determine the corresponding three 

positions (x.., y.., z.., i = 1, 2, 3) o f  the space ship. So we have: 
1 1  1 1  1 1  

a xil + b yil + c z. = d 
I 1  

a xi2 + b yi2+ c z i 2  =d  
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Solving Eqs. (24), (25), and (26), we can find the coefficients a, b, and c expressed 

in terms of d. We have: 

d I a =  

I M I  

z. 11  X. 1 11 

'i2 1 'i2 

'i3 1 xi3 

d I b =  

C =  

I M I  
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where I M I = 

The orbital plane expressed in terms of the inertial geocentric data is: 

Express the equation of the orbital plane as: 

a x . + b y . + c z . = d  , 
0 1  0 1  0 1  0 

where 
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The normal o f  the orbital plane can be expressed as: 

-.) 

A 
(36) n == a x. + bo$ + C Q  

0 1  0 1  
, 

where 

Cartesian coordi nates . 
A and 2 represent the unit vectors i n  the directions of the inertial 

I ’  Y i  I 

-t 

To normalize n we have: 

a+. + b?. + c %  
= 01 0 1  0 1  

+b  2 + c  2, ’I2 
0 0 

(37) 

We know that the unit normal vector of the equatorial plane can be expressed as: 

As shown in  Figure 4, the angle of intersection between the orbital plane and the 

equatorial plane ( 5 )  can be found from the following relation: 

C 
0 

(39) 5X.F;. = cos5 = 
e 1/2 2 

(a * + b * + c ) 
0 0 0 



x 

1 

(a2 0 0  + b2 + c ~ ) ' ' ~  0 

- - 
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A A A  
x i  Y; =i 
0 0  1 

a b c  

There fore, 

C 
-1 0 

2 1/2 <= cos 

(ao + b% + c2) 0 

From Equations (19), (20), and (21), we can determine the position 

(xi, yi, z.) of the spaceship with the data (r,, E, A) furnished by a known 

station (A, P). Using the same equations and a common time reference, we 

can determine three positions (x.., y.., z.., i = 1 ,  2, 3) of the spaceship 

at different times with the same or different known ttucking stations. 

the three sets of  data (x.., y.., z.., i = 1 ,  2, 3), we can find the parameters 

a b c of  the orbital plane by Equations (32), (33) and (34). Then, the 

intersecting angle 5 between the orbital plane and the equatorial plane can 

be determined by Equation (40). The direction /i. of the intersecting line of 

the two planes is:  

I 

1 1  1 1  1 1  
From 

1 1  1 1  1 1  

0' 0' 0 

A A  A 
L = n  x n  

e 

a 9 - boQi 
0 1  - 

1/2 ' 
- 

(a: + bf + c2) 0 

A 
The angle q between the intersecting line L and the x.-axis (See 

I 

Figure 4.) is: 
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Now, we are ready to transform the data of the inertial geocentric 

system (x., y., z.) into the orbital plane system (xo, yo, zo). First, keep 

the z.-axis fixed, then, turn the x.-y. plane T radians to coincide the x.- 

axis with the intersecting line of the horizontal plane and the orbital plane. 

Let the coordinates of  the orbital plane be x 

formed coordinates are: 

I l l  

I I 1  I 

and z . Then, the trans- 
0, yo 0 

X COS q sin q 

Next, f ix  the x -axis and rotate the y' - z. plane through an angle 5 .  
Then, the orbital coordinates become: 

0 0 I 

0 0 -  11 = cos< sin < 
- sin 5 cos 5 - I -  

Substituting Equation (43) into Equation (44), we get: 

(43) 

(44) 

cos q sin q 0 

cos < cos q 

- sin 5 cos q 

Therefore, the orbital coordinates are: 

x = (cos q) x.. + (sin q) y.. 
o i  1 1  [ I  

= -(cos 5 sin q) x.. + (cos < cos V) y.. + (sin 5 )  z.. 

= (sin 5 sin q) x.. - (sin 5 COS 7 )  y.. + (COS 5 )  z.. 
oi 1 1  1 1  1 1  

Yo i 1 1  1 1  1 1  

z 

(45 1 
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where i = 1, 2, 3 ,  and 

x.. = [ r  cos E cos A sin @ + r cos @ sin E + r cos e1 cos ( w t .  + X) 
I S S 0 ' I  

- r cos E sin A sin (wt. + X) 
I S 

y.. = [ r  cos E cosA sin @ + r sin E cos B +  r cos B I sin ( w t .  + h)  
0 I 'I S S 

+ r cos E sin A cos ( w t i  + X) 
S 

z.. = r sin Bsin E - r cos E cosA cos fl +- r sin B . 'I 0 0 

The transformed z should be very small (if not zero) compared to 

This fact suggests a method of checking the 
O i  

the values of x 

correctness of the measured data. In  fact, i f  we are certain that only one of 

the parameters of the measured data of a specific station i s  i n  error, we can 

find the correct answer by minimizing z. Analytically minimizing z with 

respect to a certain parameter of a specific station may be diff icult. But by 

using the modern high speed digital computer, it i s  easy to find the correct 

answer. 

of the specific parameter, the value of z w i l l  approach zero monotonically 

(to a certain degree of accuracy of course). The correct direction i s  not 

d i f f icul t  to find. The degree of accuracy, of course, w i l l  be dependent upon 

the accuracy of the measured data and the station position accuracy. If we 

use the same three stations a l l  the time for checking the orbit of a space 

vehicle, the station errors may be neglected. The timing error and the pertur- 

bations due to air drag and oblateness o f  earth, etc. have not been considered. 

and y 
O i  Oj 

Because, once one chooses the correct direction of  changing the value 

Now, we can proceed to use the orbital data (xoi, yo.) to determine 
I 

the orbital parameters o f  the space vehicle. In the orbital plane (xo - y o  

plane), the equation of the orbit i n  polar coordinates i s  (See Figure 5): 

(49) 



There are only three unknowns in  Equation (52). Thus, the same 

three points used to determine the orbital plane can be used to determine 

the three unknowns e, p and eo. 
The perigee of the observed space vehicle i s  at: 

e = e  
P O  

P r = -  
P ~ + e  ' 

The coordinates of apogee are: 

e = ( n + e  ) 
a 0 

r = -  P 
a 1 - e  

For three sets of data (xol, yol), (xo2, yO2) and (xO3, yO3), we have: 

- 1  Y o i  

'0 i 
8. = tan (- ), 
I 

(53) 

(54) 

where i = 1, 2, 3. 
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Knowing (rl, el), (r2, 0 2) and (r3, 03), the angle 8 

Let, 

can be 0 
found by the following procedures: 

r. = P , i = 1, 2, 3. 
I 1 + e cos(8. - eo) 

I 

Eliminating p we get the following two expressions: 

rl [ 1 + e  cos (e - e o ) ]  = r2 I 1  + e  cos (e2 - e o ) ]  1 

r [ 1 + e  cos (8 - e O ) ]  = r3 [ I  3- e COS (e3 -e,)] 1 1 

By rearranging the above two equations, we get, 

r, - r2 = e I r2 COS (e - 8,) - r cos (e - e,)] 2 1 1 

r1 - r3 = e I r3 cos (e - e,) - r COS (e - e,)] . 3 1 1 

(59) 

By eliminating e we get, 

- e,) - r COS (e - e,)] 
1 1 I r2 COS (e 

e,) - r COS (e - eo) ]  I r COS (e3 - 

(r cos 8 - r cos e ) cos e + (r sin e - r sin e ) sin 8 
- 2 2 1  1 0 2  2 1  1 

(r cos e - r cos e ) cos e + (r3 sin e - r sin 8 ) sin e 3 3 1  1 0 3 1  1 

- - rl - ‘2 
‘1 - ‘3 3 1 1 

’ (64) 
0 

0 

- 

By simplification: 

It-, (r3 cos e - r  cos e ) +  r (- r3 c0se3+  r cos8 ) +  r (r case - rl COS e l ) ]  3 2  2 2  1 1 3 2  2 

trl (r2 sin e - r sin e ) + r (r sin 8 - r sin e ) + r (r sin e - r sin e , ) ]  2 3  3 3 1  1 2  2 2 3  3 1  

(65) tan eo = 
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r (r cos e3 - r2 cos 0 ) +  r (r cos 8 - r cos e ) +  r (r cos e - r cos 8 2 2 1  1 3  3 3 2  2 1  

3 2 3  3 1  1 3 1  1 2  

e -tan-’  [: r (r 
sin 0 - r sin 8 ) + r (r sin e - r sin e ) -t r (r sin e - r sin e2) 0- 

Once 0 i s  found, the eccentricity can be found from the following equations: 0 

w -  

t r  COS (e, - eo) - r COS (e - eo)] 2 1 1 

or 

‘1 - ‘3 
e =  

t r cos (e3 - eo) - r cos (0 - eo),] 3 1 1 

Finally the semi-latus rectum p of the orbit is: 

p = r. [ 1 + e cos (e. - eo)] 
I I 

where i = 1, 2, 3. 

By measuring any three points of the orbit of the space vehicle, we can 

determine parameters p, e, and 8 from Equations (69), (68) and (66). 0 
The orbit i s  thus determined in  the orbital plane. A t  the same time, the 

orientation of the orbital plane i s  also determined. 

The perigee of  the observed vehicle i s :  

r. [ I  + e cos (0. - e,)] 
1 I 

r =  
P 

, i = 1, 2, 3. 
1 + e  

The apogee is: 

r. [ 1 + e cos (e. - e0)J 

1 - e  

I I 
r =  a , i= 1, 2, 3. 

The parameters e and 0 can be found from previous equations. 
0 
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C. ORBITAL PARAMETERS DETERMINATION BY RANGE AND RANGE 

RATE MEASUREMENTS, 

Range rate measurements can give us the information concerning the speed 

of  the space vehicle. With the knowledge of the correct speed of  the space vehicle, 

the orbital parameters can then be determined. In order to obtain the correct infor- 

mation concerning the speed of  the space vehicle, we have to  know the relative 

position of the tracking station with respect to the orbital plane. As described i n  

the previous chapter, the orbital plane can be determined from the range data 

obtained by the tracking stations. In  other words, for a minimum of  three tracking 

stations, the range rate information i s  useful only when the range information i s  

available at the same time. 

Suppose the coordinates o f  stations are (X I B ir r0), 

where i=l, 2, 3 

r = radius of  earth 

A. = geocentric station longitude 

B. = geocentric station latitude. 

0 

I 

I 

From Equation (9) of the previous chapter, the geocentric coordinates of  the 

tracking stations are: 

Since 

(x ). = r cos 1. cos 6 .  
9 1  O I I 

(y ). = r sin A. cos B. 
9 1  O I I 

(z ). = r sin B.  . 
S I  O I 

- 
cos w t  -s in  

sin w t cos w 

0 0 - 
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4 

where w = constant angular velocity of the earth, then the coordinates of the 

tracking stations i n  inertial geocentric frame are: 

(x.). = r cos A. cos 8. cds ~t - r sin x i  cos B. sin w t  (3) ' I  O I I 0 I 

(y.). = r cos X. cos 8. sin w t  + r sin A cos 8. cos w t  (4) 
1 1  O I I 0 i I 

(z.). = r sin fi . 
[ I  O i 

We know that the vehicle i s  at position (x.., y.., z..). The line joining 
1 1  'I 1 1  

1 1  1 1  1 1  1 1  
the station I (xi)i, ( Y ~ ) ~ ,  (z.).] and the vehicle (x.., y.., z..) is :  

Suppose the tangent line of the orbit at  the point (x.., y.., z..) is: 
'I [I 1 1  

m n I 

The condition that the line of  Equation (7) i s  perpendicular to the radius 

vector extending from the origin to the space vehicle (x.., y.., z..) is: 
' I  'I ' I  

rn x.. + n y.. .t I 2.. = 0, 
1 1  1 1  1 1  

since the line of Equation (7) i s  also in the orbital plane, 

a x . + b  y . + c o z i = d  0 , 
0 1  0 1  
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where 

From Equation (7), we can express y., z. i n  terms of x. and other 
I I  I 

parameters as follows: 

n 
m yi = --(Xi -x..)+ y.. 

1 1  1 1  

z. = - I (Xi - Xii) + zii . i m  

Substituting Equations (14) and (15) into Equation (9), we get: 

b n  C I  
0 0 

a x.+-(xi -x..)+ boy..+ -(xi -x..)+ c z..=d . 
0 1  m 1 1  1 1  m I1 0 I1 0 

The points (x.., y.., z..) are on the orbital plane. Therefore, 
1 1  1 1  ' I  

a x.. + b y.. + c z. .=d 
0 I1 0 I1 0 I1 0 

!.e., a x..=d - b  y . . - c  z,. . 
0 I1 0 0 1 1  0 I1 

Then, Equation (16) can be written as: 

C I  
0 

b n  
a x. + - 0 (xi - x..) t - (xi - xii) 
0 1  m 1 1  

= d  - b  y . . - c  z . . = a  x... 
0 0 I1 0 I1 O 1 1  
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Equation (19) can be rearranged as: 

b n  C I  

m m 

0 + - 0 ) (Xi - Xii) = 0. 
(ao+ - 

The term (x. - x..) cannot always be zero. Therefore, we have: 
I 1 1  

b n  C I  
ab+ - 0 + - 0 = 0. 

That is :  

(22) a m + b  n + c  I = O .  
0 0 0 

Mult iply Equations (8) and (22) by a and x.. , respectively, then take 
1 1  

the difference. We get: 

Thus, 

a ny , .+a  I z . . - b  n x . . - c  Ix . .=O.  
0 I1 0 1 1  0 1 1  0 I1 

(c x.. - a  z..) I 
0 I1 0 I1 n =  

a y.. - b x.. 
0 I 1  0 I1 

a z.. - c x.. 

The direction components of the line o f  Equation (6) are: 

m, : n1 : I =[x. .  -(x.). l: iy.. -(y.).I:[z.. -(z.).I. 
1 1 1  ! I  1 1  1 1  'I ' I  

(24) 

From Equations (24) and (25), we know that the direction components 

of the line of Equation (7) are: 
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a z., - c x.. y.. z.. 

0'1 0'1 1 1  1 1  

0 'I 0 'I + -A]  m :  n :  I =  t( 
a y.. - b x.. x.. X.. 

Therefore, the cosine of the angle between lines of Equations (6) and (7) is: 

m. m+n .  n +  I- I 
I I I 

COS k.= ' 2 2 2l'* 2 2 2 1/2 ' 

( m , + n l + l , )  (m + n  + I )  

That is, 

a z.. - c x.. y.. 
cos k = [ {  x.. - (x.).l[(-l) - 3 ] 

X.. 1 1  I I a y.. - 
1 1  o 1 1  o xii xii 

21/2 a z. , -c  x.. y.. z.. 2 
2 0 [I 0 'I+ - "1 + lYi i  - (qil + [z.. - (z.1.1 1 

a y. . -b  x.. x.. x.. 
1 1  

{ [ (  
1 1  I I 0 I1 0 I1 I1 

After calculating cos k., the speed v. of the space vehicle at (x.., y.., zii) 

can be obtained from the range rate measurement 7.. The relation i s  simply: 
I I 1 1  I I  

I 
0 
r. 

v . =  I, 
I cos k. 

I 
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where F. i s  the range rate measurement a t  the jth tracking station. Knowing 

the total velocity v. at point r. (x.., y.., z..), we can find the total energy 

of the spaceship as the sum of kinetic energy T and gravitational potential 

energy U. i.e., 

I + 

I 1 I I  ' I  1 1  

ETot = T + U 

G M  M 
e s  

r. 
I 

- 1 2 
= 7Ms v i  I 

where M = Mass o f  the spaceship 

Me = Mass of the earth 

G = Universal gravitational constant. 

S 

We know the total energy can be expressed as: 

2 2  2 
e s  

G M  M 

2 LZ 

where 
--t + + 
L = M  r. x v  . 

S I  i 

For a nearly circular orbit 

L =  M r. v . .  
S I  I 

Thus, from Equation (32), 

ETot LL 

e = / +  M M G  2 2 2  
s e  

(33) 
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The pammeter p can then be found from: 

L2 
P = 2  I 

M M G  s e  

Since, 

D 

then 

.. 

e(+ -cos -1 L(-- 1 p 1 ) l  e r. 
I i 

D. ORBITAL DETERMINATION BY RANGE-RATE MEASUREMENT ONLY. 

(37) 

This method employs four stations with Doppler mdar equipment which 

measures only the range-rate of  the spaceship. Each station observes an incoming 

frequency fi(t), where i = 1, 2, 3, 4 i s  an index specifying the station. Suppose 

f i s  the constant frequency emitted by the spaceship, and the electromagnetic 

wave propagates with the velocity o f  light c . Since the velocity o f  the spaceship 

is, i n  general, much less than the velocity o f  light, the radial velocity Vri (t) of 

the spaceship with respect to the i th station is: 

0 

f 

Equation (1) i s  based upon straight my approach and the atmospheric 

refraction has been neglected. When the spaceship i s  approaching the ith station, 

the incoming frequency f. w i l l  be higher than the constant frequency f then the 

radial velocity V .(t) i s  defined as positive. Therefore, i f  R.(t) i s  the instantaneous 
I 0, 

ri I 

distance from the station to the satellite, we have, 

d R i b )  
v . =  - -  

dt ri 
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Thus, 

where RiO represents the in i t ia l  value of R.(t) at t = t . And the four in i t ia l  

distances R. are i n  general unknown. 

Substituting (1) into (3), we get 

I 0 

I O  

t f 
R . ( t ) = R i O - J  ' [ ' -  

0 
t 

I 

dt - c(t - t  ) +  c f  j- 
0 m *  = RiO 

0 
t I  
0 

(4) 

Let x(t), y(t), z(t) be the instantaneous coordinates o f  the spaceship with respect 

to a given Cartesian coordinate system of reference and x., y., z. be the coordinates 

of the i th station with respect to the same system o f  coordinates. Consider three of 

the four stations. We have, for i = 1 I 2, 3: 

I l l  

From Equations (5), (6) and (7), x(t), y(t) and r(t) can be solved in  

terms of Rl(t), R2(t) and R3(t). Since we know that 

dt 
R.(t) = RiO - C ( t  - t ) + C f J 

t I  
0 mt I 0 

0 
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then we have, 

t 

(9) 
dt t 

( x - x 2 )  +(y -y2)  + ( z - z 2 )  = R  - C ( t  - t  ) +  c f  J 2 2 2 
20 0 0 t Tgiy 

0 

From Equations (8), (9) and (lo), we know that x, y and z can be 

solved i n  terms of  f t, R1O' R20 and R30. i.e., 
0 ,  

Now, let x , y , 
reference system. We have, 

be the coordinates of the fourth station i n  the chosen 4 4 24 

Likewise, R (t) can be expressed US: 4 
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Substituting Equations (1 l), (12) and (13) into Equation (15), we know that 

R4(t) can be written as a function o f  f , t, RlO, R20 and R30. i.e., 
0 

Now substitute Equation (15) into Equation (14). We get, 

Note the right hand side of Equation (18) i s  a function of t and f 
0 

0 ,  R1of R20/ while the left hand side of Equation (18) i s  a function of  t, f 

and R30. A t  t = t , t , t 
equations, name I y : 

and t Equation (18) can be split into four 
1 2 3  4' 
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where i = 1, 2, 3, 4. 

Solve Equation (19), and we find the four unknowns ( i .e. ,  f 
0 R1O' 

R20, and R 
position of the spaceship can be determined from Equations (1 l ) ,  (12) and (13). 

). Once we know the value of f and R30, the 30 0' R1O' R20' 
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FIGURE 1 .  Coordinate systems at the tracking station. 
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I- 

/ 

FIGURE -2. Transformation from the rectangular station coordinate 

system into the geocentric coordinate system. 
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FIGURE 3. Tmntfomtion from geocentric system to inertial geocentric 

system. 
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FIGURE 4. Orbital plane coordinate system and the geocentric 

inertial coordinate system. 



FIGURE 5. Polar coordinates in the orbital plane. 

57 
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PART Ill 

DATA SMOOTHING IN THE DETERMINATION 

OF THE ORBITAL PARAMETERS. 

A.  I NTROD UCTl ON 

A-1 Statement of  the Problem. 

The orbit of a satellite i s  determined from the data obtained with a radio 

tracking system. Various techniques are available which use range, velocity 

and angle measurements. In this study, the position of the satellite i s  determined 

by three simultaneous range measurements, one from each of  a group of  three 

earth stations called station-group. The distance between stations i s  small compared 

to the distance of the stations to the satellite; most probably, the stations w i l l  form 

an equilateral triangle but this i s  not necessary. 

Only free flight orbits (no powered flight maneuvers) have been considered. 

Assuming a two-body problem, the orbit i s  an ellipse, an hyperbola or a parabola. 

Only the case of el l ipt ic orbits with small excentricity i s  investigated. One focus 

of  the ellipse i s  the center of the earth and the orbital parameters can be computed 

knowing three positions of the satellite. When the excentricity tends to zero, the 

el l ipt ic orbit tends to a circular orbit with center 0, the center of the earth; the 

radius can be computed knowing one position of the satellite. The errors in the 

location of the stations and in  the range measurements cause an uncertainty on 

the satellite position which produces errors in the computation of  the orbit and 

of the orbital parameters. Three position measurements are necessary to determine 

an el l ipt ic orbit and only one to determine a circular orbit, the additional position 

measurements can be used to reduce the uncertainty of the orbital parameters. This 

technique which uses sampling theory i s  known as data smoothing. 
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TRUE ORBIT G 

a 

Fig. A-1 Al l  the errors in  the determination of the satellite position 

arc lumped into tin error wctor SM . S true satellite 

position, M measured satellite position. 

4 
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A-2 The Method of Approach. 

The position of the stations i s  known. The position o f  the satellite i s  

determined by a vector with origin at the center o f  gravity o f  the station group 

and with t i p  on the satellite. The location of the stations i s  assumed to be known 

I 
exactly, a l l  the various errors being lumped together as an error on the satellite 

position. 

Let S and M, be respectively the true and the measured position o f  

the satellite and denote by G the center of the station group. The measured 

vector GM i s  the vector sum of the true vector GS ana of  an error vector 

SM, as shown in Fig. A-1 . Denote by 0 the center of the earth. It i s  advan- 

tageous to express the position of S in polar coordinates: angle OG, OS = a 

and modulus (OS I = r. The error vector SM i s  defined by its modulus p and 

the angle OS, SM = cp . The vector OS and OM wi l l  be denoted respectively 

as true position vector and measured position vector, The time when the satellite i s  

at  the closest approach to the station i s  taken for origin of  time. The position of the satellite 

i s  measured every A t  sec.; the sampling time i s  denoted by t t 

0 " " k -  1 k k -k k t 

the measured satellite position are denoted by S 

phase and the modulus of  the vector error are denoted by cp and p respectively. 

I t  i s  assumed that cp i s  uniformly distributed and that p 2 k  k 
with a variance 0 k 
i s  illustrated by Fig. A-2. 

--t 4 

+ 

I + -3 

-3 

I 4 + -3 -b 

-k - k+  1 * . .  

t where t = k h t  and t = -kA t. At time t the true and 

and Mk , respectively; the k 

k k '  
i s  Rayleigidistributed 

increasing with I k I . The definition of  the various parameters 

In Section 6, a formula for the estimation of the radius R in terms of m the modulus k'  
o f  the kth measured position vector, i s  derived. A smoothing technique i s  developed 

where the optimum number of  samples and the optimum accuracy are determined. 

The case of an ell iptic orbit i s  considered in Section C. The three orbital 

A k +  1 '  parameters are defined implicitly as a function o f  m k-11 "k and 

smoothing technique i s  proposed. 

Section D contains the conclusions and a discussion of  the assumptions. 

This standard assumption corresponds to measured satellite coordinates, 
t 

independent and normally distributed about the true satellite coordinates. 
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G 

a 

4- 

I 

Fig. A-2 Polar coordinate representution of the true and 

measured satellite position at t i m e  t k' 



B. DATA SMOOTHING FOR CIRCULAR ORBIT 

B-1 The Measured Radius. 

Assuming that the orbit i s  circular, the center of the orbit i s  the center 

of the earth and the only unknown orbital parameter i s  the radius R. Consider 

again Fig. A-2. At time t = t , mk = 10Sk I i s  the measured value of  the 

can be evaluated i n  terms of r = R radius. In the triangle OM 

and the modulus and phase of the vector error, i .e. 
k 'k mk k 

p and cFk . 

2 2 2  
k m k = r k + p  - 2 r  p cos 9 k k k  

The vector error i s  unknown by definition, but i t s  statistics i s  assumed to be 

known. The random phase CP i s  uniformly distributed and the modulus p i s  

Rayleigh distributed. The vector error S M i s  represented by a joint probability 

density 

k k - 
k k  

- 
2 .  2 2 t  where CI I S  the mean square modulus, i .  e. 'k= Pk. 

2 k 
It i s  assumed that o i s  a known function of  a. The rotation of the 

earth i s  neglected as a first approximation since the satellite rotates much 

faster than the earth. 

A bar above a rundurn variable me::ns average. 
t 
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Fig. '3-2 Effect of e.:rth rotation for iirculcrr c h i t .  ?otL, the 

satellite S and the station group C rotote about 

the center of the earth. The subscript k refers to time t k' 
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8-2 Estimation of  the Radius. 

The radius R can be estimated from one measured value rn An 
k '  

unbiased estimator s 

By definition 

i s  obtained by comparing m to R. k k 

2 
- 1 2rr Pk - 'k/o; - 
m k - z  iA m k 2 e  dvk Pk 

'k 

k '  
and m is the average of m with respect to both cp and p 

k k k 

After integration with respect to cp [ 1 ] , k n 

where E( ) i s  the complete ell iptic integral o f  the second kind. 

Since p i s  much smaller than R, i t  i s  convenient to develop E( ) k 
i n  series and keep only the first three terms, Then 

2 
'k 

x R + -  
4R 

Integrating with respect to p yields, 
k 

2 
'k 

w R + -  
4R 
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The mean of i s  not equal to R, i.e. mk i s  not an unbiased 
k 

estimator. Solving (B-6) yields 

From (8-7), it follows that 

- 
i s  an unbiased estimator for R, i. e. s k  = R. The variance of m 

obtained 

i s  easily k 

- 
2 -2 

mk - mk var (m ) = k (B-9) 

Using (6-1) and (B-2) and integrating, 

(B-1 0) 
2 2  

= R  + a k  

Combining (B-9), (B-10) and (B-6) yields 

2 
2 2  "k 2 

var(m ) = R  + 'k - @+x) k 
2 

'k 
M -  

2 

(B-11) 
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The variance of  s i s  k 

- ., "2n 

2 2 -  
k - 'k 

- 
var ( s  ) = s k 

1 zi 'k 
2 
'k 

-7 
'k 

(-) 
4m k 

JRL + P; - R p k  cos CP k 

(B-12) 

(B-13) 

(B-14) 

k '  where K (  ) i s  the complete el l ipt ic integral of the first kind. Since R>> p 

(B-15) 

Combining (B-13) and (8-14) and integrating yields 

(B-16) 

(B-17) 

Combining (B-6), (B-17) and (B-13) and neglecting the smaller terms yields, 

as expected, 
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(B-18) 

From (B-8) 
2 4 

2 2  'k 'k 
2 2 16 mk 

s k =  mk - -  + 

From (B-1) 

1 1 

(R2 + p i )  - 2Rp C O S C P ~  
-T= 
mk k 

TT 

1 s  
0 TT 

M 

1 dT = 
1 

T k  
mk R2 - P t  

Integrating (8-21) with respect to p yields k 

From (B-19) 

2 2 "k 
S ,  = m, - --t 

2 k k 

Combining, (B-lo), (8-22) and (B-23) 

'k 
(7) 1 6mk 

2 
'k 
2+ 

4 
'k 

16R2 

(B-19) 

(B -20) 

(8-21) 

(B-22) 

(8-23) 

(B -24) 
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Combining (B-24), (8-18) and (B-12) yields 

2 4 
'k 'k z var (s ) = - + 

k 2  
2 

'k 

2 2 
0. 

2 
0, 
k '-k 

- T = 1  That is, the unbiased estimator s has the same variance k 

k '  as the measured radius m 

8-3 Data Smoothing for Radius Estimation. 

In  a practical situation, many measured m and, therefore, many 

samples s of the unbiased estimator are available. It i s  shown next that 

the best estimate of R i s  the sample mean s '  of  size 2n + 1. 

k 

k 

k = - n  

Clearly, the sample mean i s  an unbiased estimator 

The variance of the sample mean of s '  i s  

n n 

I =  - n  k = - n  

Since the successive samples are independent and unbiased, a l l  the 

cross terms are zero, 

n 
- 2  1 7 2 

(s' - s ' )  = 2 i (Sk - R) 
k = - n  

(2n + 1) 

(B -25) 

(B-26) 

(8-27) 

(B -28) 

(B-29) 
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2 
k =  - n  

var (s ' )  = 7 L - . 
(2n + 1 )  

2 I f  a l l  the measurements had the Same accuracy, ok = constant, the 

variance of  s' would decrease continuously when n increases. I n  the 

actua I situation, 

with k. The variance of s '  decreases first and then increases when n 

increases rapidly with the distance to the station, i. e. 
2 

'k 

increases. 

The optimum number of  samples N i s  the choice o f  n which makes 

the variance of s '  minimum. 

I n  other words N i s  the maximum value of n which Satisfies the 

inequality 

) - var (s' (2N + 1) ) y o ,  (2N + 3) var (s' 

(B -30) 

2 
k k and N can be obtained i f  the variance o of each measurement m i s  

known as a function of the satellite position a This technique i s  illustrated k '  
best by an example. 

B-4 Example of Data Smoothing. 

Assume that the variance of the modulus of  the error vector i s  a parabolic 

and that the satellite position i s  measured function of the true position angle a 

at intervals of one degree. 
k 

For example, 

(B-31) 

2 2 
a2 = a (a +b k ). k 

n From (8-30), i t  follows 
n ' k 2 ) .  

2b )=-(-+--2 o a L L 

(2n + 1) var (s '  
2 2n+1 (2n+ 1) k=, 

(B -32) 

(B-33) 
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From standard tables [ 2 1 , 
n 

l k =  2 n(n + 1 )  (2n + 1 )  

6 
I 

k = l  

so that (8-33) reduces to 

b n(n +1) 2 
0 

(a + 1. 
2(2n + 1 )  3 (2n + 1)) = 

var (s '  

Similarly, 

b(n + 1) (n +2) 2 
(3 

var (s' ) =  (a + 1. 
(2n + 3, 2(2n + 3) 3 

(8-34) 

(8-35) 

(8-36) 

The optimum value of n i s  determined by (B-31), i.e. 

) <  0 (B -37) b n(n + 1 )  2 
b(n + 1 )  (n + 2) (3 

2 
(3 

(a + 1 -  (a + - 
2(2n +3) 3 2(2n + 1 )  3 

which reduces to 

2 
I >  0 .  

0 2 b(n+ 1 )  
[ - a +  - 

(2n + 3) (2n + 1 )  3 

The solution is, 

(B -38) 

(B -39) 

The optimum value of N i s  obtained by truncation, t 

N = Trunc (/F - 1 )  (B -40) 

t The truncation of a positive number x i s  the largest integer less or equal to x.  
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and the optimum number of samples i s  2N + 1. 

Assume a = 1 and b = .01 to continue the example. From (B-40), 

N = 16 (B-4 1) 

The optimum number of samples i s  33, the variance of the sample 
, 

mean i s  

(8-42) 
2 

var (s '  ) = .0346a . 33 

I I f  only the best sample (k = 0) i s  used, the variance is, 

2 var (so) = .5 u . (8-43) 

I 

Therefore, the variance of the estimator i s  about fourteen times smaller after data 

smoothing. To illustrate the behavior of the variance of the sample mean as a 

function o f  the number of samples, the relation (B-36) i s  plotted i n  Fig. 8-1 for 

a =  1 and b=0.01.  

B-5 Earth Rotation and Data Smoothing. 

The effect of earth rotation i s  investigated assuming that the trajectories 

of the satellite and of the station group are circular with center 0 and coplanar. 

When the rotation of  the earth i s  neglected G i s  fixed and the points 0, G and 

S 

B =  OS 

6 G ,  0''s by a*'. Let s2 

the earth and of the satellite i n  circular orbit. The position of S 0 corresponds to the 

origin of time. Assume again that the positions of the satellite and of the earth are 

sampled at  regular time intervals, i .e.  t k -  - kn-i where k i s  an integer. A t  t ime t k' 
the angular position of the satellite with respect to the fixed vector O'S, i s  

are conti,nuously aligned. The rotation of the earth produces an angular displacement, 
o 4  -4 

6 G  of O G  with respect to 6So as shown i n  Fig. B-2. Denote the angle, 0 '  
and Q S  be respectively the constant angular velocity of 

G 

a and a* denote the angle 6 G ,  0's without and with earth rotation. 
t 
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4 4 4 4 4 4 

oso , O s k =  OSo , OGk+OG, OSk 

Since , - B k - QG tk , it follows 

which can be written i n  the form, 

a;= k*Qs A T ,  

Q. 

S 
where k* = k( l  -Ew ) . 

It follows that the effect o f  the rotation of the earth i n  the determination 

of the radius of the orbit can be accounted for by substitution o f  k* for k i n  

Par. B-3. To illustrate the procedure, the example of Par. B-3 i s  continued by 

taking into account earth rotation. 

Assume that satellite and earth rotates in the same direction, the satellite 

n, 
nS 

being twenty times faster, i. e. - = 0.05 and k* = .95 k. 

Let (2n* + 1) be the number of samples when taking the earth rotation 

into account. Then (B-33) becomes, 

(B -45) 

(B -46) 

Assuming that earth and satellite rotates i n  the same direction. 
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3 n" 

Using (6-34), (6-47) reduces to, 

2 (.95) b n*(n* + 1) 
2 
0 

(2n* + 1))=2-(~ + -1 var (so 

Comparing (B-35) and 

rotation i s  to replace b by 

(B-48), i t  i s  clear that the effect of earth 

b * =  b( l  --). n,G 

"S 
Therefore, the optimum value of n*, N*, i s  obtained by substitution of b 

by b* i n  (8-40). 

N* = Trunc (- 
.95 

(B -47) 

(8-49) 

when a = 1 and b =  .01, N* = 17. 
The optimum number of  samples becomes 35, the variance of  the estimator 

2 becomes .0274 o . 
In  conclusion, when the relative velocity earth satel l i te decreases (earth 

rotates i n  same direction as satellite), the optimum number o f  samples to evaluate 

the radius increases and the variance of  the sample mean decreases. I f  the earth 

and the satellite had the same angular speed, the satellite w i l l  look stationary, 

the variance of the sample mean w i l l  then decrease linearly with the number of 

samples. The conclusions are just opposite i f  the earth and satellite rotate i n  

opposite directions. 
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C. 

c-1 

DATA SMOOTHING FOR ELLIPTICAL ORBIT 

Determination o f  the Orbital Parameten. 

The orbit i s  determined i n  polar coordinates with respect to the vector 

o's, . The shape of the orbit depends on two numbers: p the semi-latus rectum 

or parameter, and e, the excentricity. The position of the foci l ine with respect 

to OS i s  defined by the angle 8. The three orbital parameters p, e and 0 

can be determined by three positions of the satellite. 

-+ 

0 

Assuming that three exact positionsof the satellite, S , S 1 2  and S3 

are known, the orbital parameters could be determined exactly. Let (rl , a l ) ,  

(r2 , a ) and (r3 , a ) be the polar coordinates of  S1  , S2, S3. Then p, e 2 3 
and e are the solutions o f  a set o f  equations: 

- P 
1 + e cos@ - a  ) rl - 

1 

P 

a 2) 1 + e cos(8 - '2 = 

P r =  3 1 + e  cos(€+ a, ) 3 

Expanding cos@ - a) and making the change o f  variables x = e cos 8 and 

y = e sin 8, yields a set of linear equations: 

1 p - (r  COS^ ) x  - (rl sinal)y = r, 1 1 

1 p - (r cos a ) x - (r2 sin a2) y = r2 2 2 

1 p - (r cos a ) x - (r3 sin a ) y = r3 3 3 3 
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The solution i s  easily obtained using matrix algebra: 

r r r (sin@ - a  )+s in@ -a3) +sin(a2 -a l ) )  
1 2 3  3 2  1 

P =  

2 - r r sin@ - a ) +r  r sin(al -a3) +r r sin@ 3 2  3 2 1 3  2 1  

r r (sin a -s in  a ) +r r (s ina - s i n  a ) + r r (sin a - sina2) 3 2  2 3 1 3  3 1 2 1  1 
X =  

2 r r sin@ 3 2  3 2 1 3  - a ) + r  r sin(al - a3) + r2r1 sin@ 

(C -3) 

r r (cos a -cos a ) + r  r (cos a 
3 2  3 2 1 3  1 3 2 1  2 1 

r r sin@ -a ) +  r r sin@ 3 2  3 2 1 3  1 3 2 1  

  COS^ ) + r  r (coscx - c o s a  ) 

Y =  K-5) 
al) -a ) +  r r sin(a2 - 

Then e =  L q  
e =  tan -1 ( y / x )  . 

a nd 

C-2 Estimation of p, e and 8. 

Refer again to Fig. A-2. In a practical situation, the exact polar coordinates 

(rl, al), (r2, a2) and (r3, a3) are not available. It i s  necessary to estimate p, e and 

9, using the measured polar coordinates (ml, 8 1), (m2, 8 2) and (m3, B3). 

Clearly, a = B + Yk' In  the triangle 0 Mk Sk 
k 

therefore, 

sin Yk sin cpk 

'k mk 
- - - -* 

(C -9) 
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where (C-10) 

As a first approximation, the estimate E E and E or p, x and y 
P, x Y 

are obtained by replacing a by @ and rk by mk in (C-3), (C-4) and (C-5): k 

2 - 8 1 )  
P m m sin (B - p2) +m m sin(B - p3) + m m sin(@ 

3 2  3 1 3  1 2 1  

m m (sin @ - sin p ) +m m (sin p3 - sin pl) +m m (sin p1 - sin p2) 
3 2  2 3 1 3  2 1  E =  

X 

2 - 8 1 )  m m sin(& - p2)+m m sin@ -p3)+ m m sin@ 3 2  1 3  1 2 1  

m m (cos - cos @ ) + m m (cos p 1  - COS @ ) + m m (COS p2 - COS pl) 3 2  3 2 1 3  3 2 1  

3 2  3 2  1 3  1 2 1  

E =  
Y m m sin($ - B + m m sin(6 - p3) + m m - B,) 

(C-11) 

(C-12) 

(C-13) 

To find the mean and the variance of E E and E requires six 

integrations too diff icult to be practical. The solution i s  to replace E , E 

and E 

i t  i s  convenient to transform the random variables from Polar to Cartesian coordinates. 

Let 

P? x Y 

P X  
by approximate power series which can be integrated. For this purpose, 

Y 

Uk = pk cos cpk and v = pk sin cpk. The polar density distribution k r )  

becomes 

(C-14) 

(C-15) 
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The measured samples m and fl become: k k 

1. p k =  a -sin-' ( 'k 
k 

(C-16) 

(C-17) 

The estimated values of p, x and y are functions o f  the six independent 

variables ul, v , u , v , u , v which have zero mean. As a first approximation, 1 2 2 3 3  

(C-18) 

where the subscript 0 means evaluated at u = u2 = u3 = v1 = v2 = v3 = 0. Clearly, 

(E ) = p, the true value o f  p. 
P O  

With the approximation (C- 18), the mean and the variance of the sampled 

P 
value E are easily obtained: 

t = p /  
P 

(C-19) 

(C -20) 
I i= 1 I 

The cross terms disappear because al l  the u. and v. are independent. I f  
2 '  I 

the excentricity e i s  very small, the variance B. of the modulus of the vector 

error, which corresponds to a position a. of the satellite, can be read on the curve 

made for circular orbit. 

I 

I 
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C-3 Data Smoothing for Ell iptic Orbit. 

It was shown i n  C-2 that an estimate o f  the orbital parameters can be 

computed after measuring three positions o f  the satellite, say i = 1, 2 and 3. 

I f  in a practical situation n measured values of m and @ k  are available, 
n 
3 

The sample mean of  size 2N + 1, (E ) *  

than any single estimate (E ) 

same i s  true for e and 6.) 

k 
estimates of  p, e and e can be computed: (E ) 1' (EpI2 ' * * *  

or (E ) . . . , for a proper choice of  N. (The 

i s  a better estimate of  p 
p 2N+1' 

P l  P 2  

With the approximation (C-18), 

N 

Assuming that three consecutive measurements are combined to form an estimate 

of p, the k th sample i s  

(C-21) 

(C -22) 

Combination of  (C-21) and (C-22)yields, 

The mean of the sample mean i s  p. The variance of  the sample mean of  

size 2N + 1 i s  
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Since a l l  the random variables are independent with zero mean, a l l  the 

cross products disappear: 

(C -24) 

(C -25) 

i t  follows 
2 - " ik 
i + k  - 1' = v. 

2 
Since , U. i + k  

2 

. (C-26) 
pk 2 - ' i + k  N 3 . a ~  a E  

Y- Y- 
)o i - \ (3) +(- Var(E P );N+l - 2N+1 L L L  0 

1 - 
2 k = - N  I =  1 sui+ k avi+ k 

a E  
Pk )o and (-lo pk can be obtained by taking the partial derivatives of  

a E  
(- 

aui+k i + k  av. 

(C-11) with respect to u and v and then substituting 0 for u and v. I f  the 

curve modulus variance versus satellite location i s  available, everything i s  known 

i n  (C-26) except N; that is, Var (E ) *  i s  a function of N. The optimum 

value N* i s  the value of  N which minimizes Var (Ep) iN+,  . The best estimate 

o f  the parameter p of the ell iptical orbit is  then (Ep)&+.+ . Similar results could 

be obtained for e and p. 

~ 2 N t l  
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D. CONCLUSION. 

The purpose of this report was to develop a data smoothing technique for 

an optimum determination of the orbital parameters of a free flight orbit. A position 

vector for the satellite i s  determined from three range measurements, one from each 

of the three stations. The measured position differs from the true position by an error 

vector which combines a l l  the various errors. The data smoothing technique developed 

here differs from conventional sampling theory because the variance of a sample 

(measured position-vector) i s  not a constant but a function o f  the relative position of 

the satellite and of the station. 

If the orbit i s  circular, the only orbital parameter i s  the radius. A formula to 

estimate the radius with one vector position measurement i s  derived. A better estimate 

i s  obtained by using a sample mean of size N" as an estimate. The optimum number 

of samples N", i .e. the optimum orbital arc length to measure, i s  determined. An 

example i s  completely solved showing that the accuracy increases considerably. The 

effect of earth rotation i s  easily accounted for, 

If the orbit i s  elliptical, the three orbital parameters p, e and 8 can be 

determined by three position vector measurements. Formulas for the estimates E 
E and E of p, e and 8 i n  terms of  the modulus and angles of the measured 

position vectors are derived. Since the formulas are very complex, the mean and the 

variance of  the estimates cannot be obtained in closed form. The method proposed i s  

to expand each estimate i n  powers of the components u. and v.(i = 1, 2, 3) of the 

three corresponding error vectors. A technique of data smoothing i s  proposed to increase 

the accuracy. This  technique w i l l  determine the optimum number of samples for best 

accuracy and the variance to expect. 

P' 
e 8 

I I 

The problem of data smoothing of the orbital parameters was completely 

solved for a circular orbit and a method was developed for an ell iptical orbit. Much 

work remains to be done for the ell iptical orbit: more terms in the series development, 

formulas for a l l  the partial derivatives, and application to specific examples. Only 

the information contained in  the range measurements was used. Obviously, for free 
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flight orbit and equal sampling intervals, the same area i s  covered between two 

samples; this information should be used to improve the accuracy. On ly  free 

flight orbits have been considered while an increase i n  the accuracy of  the orbit 

determination during a satellite transit i s  very desirable. 

The data smoothing technique developed in this report i s  quite powerful 

and general. I t  can be used to determine constant parameters, which are 

explicit ly or imp1 ic i t ly  functions of sampled values and of random variables. 

The random variables may be stationary or time-varying. A minimum number of  

samples i s  necessary; for example, three position samples (three measured position- 

vectors) are necessary to determine the orbital parameters. I f  more samples are 

available, the accuracy can be increased. It i s  quite probable that this data 

smoothing technique could be modified for the determination of  time-varying 

parameters i n  presence of time varying random variables. 
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LIST OF SYMBOLS IN PART Ill 

+ + 
Modulus o f  0 G and G M 

Elliptic integral; E E E estimates of p, x, and y 
P X Y  

Ex ce n tri city 

Center of the station group 

Subscript denotes successive satel l i te  positions 

Measured and true satellite positions 

Modulus of 0 M and 0 S 

Center of the Earth 

Elliptical parameter; p( ) Probability density 

Radius of circular orbit 

Unbiased estimator for the radius 

+ + 

Error vector 

Cartesian components of  vector error 

Define e and 8 ( x =  e cos 8 , y =  e s ine )  

-P + *  -b + -P 

+ 
Angles OG, OS; OG, OM; OM, OS 

Angular position of  foci -line with respect to OS 

Modulus and phase of  vector error 
0 

Angular rotation of station group and satellite 

A dot as a superscript means sample mean. 

A bar as a superscript means average. 

'G' ' S  

- 
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